[CONTRIBUTION FROM THE BAKER LABORATORY OF CHEMISTRY AT CORNELL UNIVERSITY]

The Chlorinates. III. Temperature-Concentration Equilibria in the Systems Methylene Chloride-Chlorine and Methyl Chloride-Chlorine. The Perchlorides of Methylene and of Methyl^{1,2}

BY J. ALLEN WHEAT, II, AND A. W. BROWNE

In determining temperature-concentration equilibria in the system methylene chloridechlorine the experimental procedure was identical with that followed in the earlier work with chloroform and chlorine.² The data obtained are presented in Table I and are plotted in Fig. 1.

TABLE I	
TEMPERATURE-CONCENTRATION OR SOLUBILITY	Data of
THE SYSTEM CH ₂ Cl ₂ -Cl ₂	

Temp., °C.	Concn., mole % Cl	Curve (Fig. 1)
- 97.0	0.0	A. (Solid CH_2Cl_2 , liq., vapor)
- 98.0	1.5	
- 99.5	3.1	
-101.5	6.0	
-104.0	7.4	
-108.5	11.5	
-110.0	14.7	AB. (Solid CH2Cl2, satd. soln.,
-113.0	16.8	vapor)
-116.5	20.5	
-119.5	22.9	
-120.5	23.8	
-122.5	25.1	
-124.5	26.5	
-128.0	27.7	B. (Eutectic: solid CH ₂ Cl ₂ , solid (CH ₂ Cl ₂) ₂ ·Cl ₂ , satd, soln., va-
		por)
-127.0	28.5	• <i>i</i>
-126.0	29.4	
-125.5	30.8	
-125.0	32.2	
-125.0	34.8	BCD. (Solid (CH ₂ Cl ₂) ₂ ·Cl ₂ , satd.
-126.0	37.4	soln., vapor)
-127.5	39.4	
-129.5	41.0	
-131.5	42.6	
-134.0	44.5	
- 135.0	45.1	D. (Eutectic: solid (CH ₂ Cl ₂) ₂ - Cl ₂ , solid CH ₂ Cl ₂ ·Cl ₂ , satd. soln, vapor)
-130.5	46.6	, (u por)
-127.0	48.9	
-126.5	50.5	DEF. (Solid CH ₂ Cl ₂ ·Cl ₂ , satd.
-127.0	51.3	soln., vapor)
-128.0	53 .0	
-130.5	55.0	

⁽¹⁾ This article is based upon the thesis presented to the Faculty of the Graduate School of Cornell University by J. Allen Wheat, II, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

132.0	55.5	F. (Eutectic: solid CH ₂ Cl ₂ ·Cl ₂ , solid CH ₂ Cl ₂ ·2Cl ₂ , satd. soln., vapor)
129.5	56.3	- •
125.5	59.1	
123.0	61.1	
121.5	63.2	
119.0	65.6	FGH (Solid CH ₂ Cl ₂ ·2Cl ₂ satd
117.5	67.0	soln., vapor)
119.0	68.6	, ·
121.0	70.2	
122.0	71.3	H. (Eutectic: solid CH ₂ Cl ₂ ·2Cl ₂ , solid Cl ₂ , satd, solu, vapor)
120.0	72.5	5011 012, 50111, 50111, (u pol)
119.0	74.8	
117.5	76.2	
115.5	79.8	HI. (Solid Cl. satd. solu.
110.5	85.6	vapor)
106 0	92.3	(upor)
104 0	95.9	
102.0	100.0	I. (Solid Cl ₂ , liquid, vapor)

For the investigation of the system methyl chloride-chlorine, in which both components are vapors at ordinary temperatures, a special apparatus, shown in Fig. 3, was used. This consisted essentially of a closed reaction cell immersed in a pentane bath, the temperature of which could readily be controlled between -150° and $+20^{\circ}$ by means of liquid air. Accessory devices facilitated the introduction of measured amounts of either component into the cell. For

⁽²⁾ For the preceding articles in the current series, see Wheat and Browne, THIS JOURNAL, 58, 2410 (1936); 60, 371 (1938).

-124

-123

-121

27.8

28.3

30.0

each concentration studied, the system was cooled well below the freezing point, with constant agitation, until solidification occurred. The bath

TEMPERATURE-CONCENTRATION OR SOLUBILITY DATA OF THE SYSTEM CH₃Cl-Cl₂

°C. ℃.	Concn., mole % Cl2			Cu	rve (Fig. :	2)	
- 90	0.0	А.	(\$	Solid CI	H₃Cl, liq.	, vapor	·)
- 95	6.5						
-100	11.2						
-103	14.2	AB.		(Solid	CH₃Cl,	satd.	soln.
-108	17.5	va	ар	or)			
-114	21.6						
-119	25.8						

-120	34.6	
-120	35.1	BCD. (Solid (CH ₃ Cl) ₂ ·Cl ₂ , satd.
-121	40.1	soln., vapor)
-122	41.0	
-124	43.2	
-125	44.1	D. (Eutectic: solid (CH ₈ Cl) ₂ ·Cl ₂ , solid CH ₃ Cl·Cl ₂ , satd. soln., va-
		por)
-124	45.2	
-122	49.0	
-122	51.6	DEF. (Solid CH ₈ Cl·Cl ₂ , satd.
-123	54.5	soln., vapor)
-124	57.4	
-128	62.0	
-129	63.3	F. (Eutectic: solid CH ₃ Cl·Cl ₂ , solid Cl ₂ , satd. soln., vapor)
-124	66.5	
-120	69.5	
-117	72.0	FG. (Solid Cl ₂ , satd. soln., vapor)
-113	78.0	
-110	82.0	
-105	89.6	
-104	95.0	
-102	100.0	G. (Solid Cl ₂ , liq., vapor)

was then allowed to warm slowly, with constant stirring, and the temperature of the bath at which the last trace of the solid phase disappeared, was taken as the freezing point. Possible error due to temperature lag between bath and cell was elimi-

Fig. 3.—A, Cylinder of CH₈Cl; B, gas trap (mercury); C, double stopcock; D, E, water-jacketed gas buret and leveling bulb (mercury); F, exhaust stopcock; G, double stopcock; H, glass spiral; I, reaction cell; J, pentane-bath; K, electric motor; L, exhaust stopcock; M, gas drying bottle (concentrated sulfuric acid); N, double stopcock; O, P, water-jacketed gas buret and leveling bulb (saturated NaCl in water); Q, gas trap (saturated aqueous solution of sodium chloride); R, cylinder of chlorine; S, liquid air supply; T, copper tubing: U, aspirator pump.

B. (Eutectic: solid CH₃Cl, solid (CH₃Cl)₂·Cl₂, satd. soln., vapor) The data in the foregoing tables clearly indicate the formation of three chlorinates of methylene chloride, and two chlorinates of methyl chloride, all with congruent melting points, as follows

- (1) methylene chloride hemichlorinate, $(CH_2Cl_2)_2 \cdot Cl_2, -124.5^{\circ}$
- (2) methylene chloride monochlorinate, CH₂Cl₂·Cl₂, −126.5°
- (3) methylene chloride dichlorinate, CH₂Cl₂·2Cl₂, −117.5°
- (4) methyl chloride hemichlorinate, $(CH_3Cl)_2 \cdot Cl_2, -120^{\circ}$
- (5) methyl chloride monochlorinate, CH₃Cl·Cl₂, −122°

While no evidence concerning the structure of these compounds has been obtained as yet, it is possible to write their formulas in the manner tentatively suggested for the chlorinates of chloroform and of carbon tetrachloride in the earlier articles of the current series. The fact that the maximum number of chlorine molecules held in combination by any of the chloromethanes is equal to the number of chlorine atoms in the chloromethane molecule tends, in the opinion of the authors, to confirm the idea that the solvates under investigation are coördination compounds.

In conformity with the definition of perchlorides proposed in the second article of this series, the three chlorinates of methylene chloride and the two of methyl chloride may be regarded as perchlorides of methylene, and of methyl, respectively. Their empirical composition could therefore be expressed by the formulas $(CH_2)_2Cl_6$, CH_2Cl_4 , CH_2Cl_6 , $(CH_3)_2Cl_4$ and CH_3Cl_3 .

Summary

Two chlorinates of methyl chloride, or perchlorides of methyl, and three chlorinates of methylene chloride, or perchlorides of methylene, have been identified and their congruent melting points determined.

Ithaca, N. Y.

Received April 5, 1940

[CONTRIBUTION FROM THE BAKER LABORATORY OF CHEMISTRY AT CORNELL UNIVERSITY]

The Chlorinates. IV. Temperature–Concentration Equilibria in the System Hydrogen Chloride–Chlorine. The Hydrogen Perchlorides^{1,2}

By J. Allen Wheat, II, and A. W. Browne

Since chlorine readily forms solvates with the	-123	30.6	
chloromethanes ² it has been suggested tentatively	-122	32.2	BCD. (Solid (HCl) ₂ :Cl ₂ , satu-
	-122	35.0	rated solution, vapor)
TABLE I	-124	37.6)	
TEMPERATURE-CONCENTRATION OR SOLUBILITY DATA OF THE SYSTEM HCl-Cl ₂	-125	38.0 }	D. (Eutectic: Solid (HCl) ₂ : Cl solid HCl:Cl ₂ , saturated solutio
Temp., Concn., °C. mole % Cl ₂ Curve (Fig. 1)		J	vapor)
-112 0.0} A. (Solid HCl, liquid, vapor)	-120	40.4	
-114 67)	-116	44.8	
-117 12 5	-115	49.4	DEE (Solid HCI.Cl. saturated
-117 12.0 AB (Solid HCl continuated solution	-116	54.0	solution manor)
-120 17.0 AB. (Solid ACI, saturated solu-	-117	57.3	solution, vapor)
-122 19.0 (ion, vapor)	-120	60.0	
-125 25.0 -128 25.6	-124	63.5)	
-129 26.3 B. (Eutectic: Solid HCl, solid (HCl) ₂ :Cl ₂ , saturated solution,	-128	66.0	F. (Eutectic: Solid HCl:Cl ₂ , solid Cl ₂ , saturated solution, vapor)
vapor)	-122	68.7)	
	-117	72.6	
(1) This article is based upon the thesis presented to the Faculty	-112	77.5	FG. (Solid Cl ₂ , saturated solution,
in partial fulfillment of the requirements for the degree of Doctor of	-109	82.5	vapor)
Philosophy.	-106	88.9	- •
(2) For the preceding articles in the current series, see Wheat and	-103	95.0	

-102

100.0

G. (Solid Cl₂, liquid, vapor)

(2) For the preceding articles in the current series, see Wheat and Browne, THIS JOURNAL, 58, 2410 (1936); 60, 371 (1938); 62, 1575 (1940).